An Optimization Clustering Algorithm Based on Texture Feature Fusion for Color Image Segmentation

نویسندگان

  • Gaihua Wang
  • Yang Liu
  • Caiquan Xiong
چکیده

We introduce a multi-feature optimization clustering algorithm for color image segmentation. The local binary pattern, the mean of the min-max difference, and the color components are combined as feature vectors to describe the magnitude change of grey value and the contrastive information of neighbor pixels. In clustering stage, it gets the initial clustering center and avoids getting into local optimization by adding mutation operator of genetic algorithm to particle swarm optimization. Compared with well-known methods, the proposed method has an overall better segmentation performance and can segment image more accurately by evaluating the ratio of misclassification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...

متن کامل

Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation

Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...

متن کامل

Color image segmentation based on multiobjective artificial bee colony optimization

This paper presents a new color image segmentation method based on a multiobjective optimization algorithm, named improved bee colony algorithm for multi-objective optimization (IBMO). Segmentation is posed as a clustering problem through grouping image features in this approach, which combines IBMO with seeded region growing (SRG). Since feature extraction has a crucial role for image segmenta...

متن کامل

Hybrid Region and Edge Based Unsupervised Color-Texture Segmentation for Natural Images

The paper proposes a generic color-texture feature integration framework. We propose two variants of edge based texture capturing method using filter banks of tensor products obtained from Orthogonal Polynomials (OP) OP3 of order 3 and OP5 of higher order 5 which are applied on Hybrid Color Space (HCS) for color texture feature integration. A region based unsupervised segmentation algorithm is ...

متن کامل

Adaptive image segmentation based on color and texture

We propose an image segmentation algorithm that is based on spatially adaptive color and texture features. The features are first developed independently, and then combined to obtain an overall segmentation. Texture feature estimation requires a finite neighborhood which limits the spatial resolution of texture segmentation, while color segmentation provides accurate and precise edge localizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Algorithms

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015